Markscheme

May 2017

Physics

Standard level

Paper 3

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1	a		in order to keep the temperature constant \checkmark in order to allow the system to reach thermal equilibrium with the surroundings/OWTTE \checkmark	Accept answers in terms of pressure or volume changes only if clearly related to reaching thermal equilibrium with the surroundings.	1 max
	b		```recognizes b as gradient } calculates b}\mathrm{ in range 4.7 < 104 to 5.3 1 104 } Pam }```	Award [2 max] if POT error in b. Allow any correct SI unit, eg $\mathrm{kg} \mathrm{s}^{-2}$.	3
	C		$V \propto H$ thus ideal gas law gives $p \propto \frac{1}{H} \checkmark$ so graph should be «a straight line through origin,» as observed \checkmark		2
	d		$\begin{aligned} & n=\frac{b A}{R T} O R \text { correct substitution of one point from the graph } \checkmark \\ & n=\frac{5 \times 10^{4} \times 1.3 \times 10^{-3}}{8.31 \times 300}=0.026 \approx 0.03 \end{aligned}$	Answer must be to 1 or 2 SF. Allow ECF from (b).	2

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | \mathbf{e} | very large $\frac{1}{H}$ means very small volumes / very high pressures \checkmark
 at very small volumes the ideal gas does not apply
 OR
 at very small volumes some of the assumptions of the kinetic theory of gases do not hold \checkmark | |

Question		Answers	Notes	Total
2	a	$\begin{aligned} & g=\frac{4 \pi^{2} \times 1.60}{2.540^{2}}=9.7907 \\ & \Delta g=g\left(\frac{\Delta L}{L}+2 \times \frac{\Delta T}{T}\right)=« 9.7907 \times\left(\frac{0.01}{1.60}+2 \times \frac{0.005}{2.540}\right)=» 0.0997 \\ & \text { OR } \\ & 1.0 \% \checkmark \\ & \text { hence } g=(9.8 \pm 0.1) « \mathrm{~ms}^{-2} » \text { OR } \Delta g=0.1 « \mathrm{~ms}^{-2} » \checkmark \end{aligned}$	For the first marking point answer must be given to at least 2 dp . Accept calculations based on $\begin{aligned} & g_{\max }=9.8908 \\ & g_{\min }=9.6913 \\ & \frac{g_{\max }-g_{\min }}{2}=0.099 \approx 0.1 \end{aligned}$	3
	b	$\begin{aligned} & \frac{T}{T_{0}}=1.01 \checkmark \\ & \theta_{\max }=22 «^{\circ} » \checkmark \end{aligned}$	Accept answer from interval 20 to 24.	2

Section B

Option A - Relativity

| Question | | Answers | Notes | Total |
| :---: | :---: | :--- | :--- | :--- | :---: |
| $\mathbf{3}$ | a | a set of coordinate axes and clocks used to measure the position «in space/time of an object
 at a particular time»
 OR
 a coordinate system to measure x,y,z,and $t /$ OWTTE \checkmark | $\mathbf{1}$ | |
| | b | i | magnetic only \checkmark
 there is a current but no «net» charge «in the wire» \checkmark | |
| | b | ii | electric only \checkmark
 P is stationary so experiences no magnetic force \checkmark
 relativistic contraction will increase the density of protons in the wire \checkmark | $\mathbf{2}$ |

Question			Answers	Notes	Total
4	a		$\Delta t_{\text {p }} /$ observer sitting in the train \checkmark		1
	b		$\gamma=\frac{\Delta t_{Q}}{\Delta t_{P}}=«=\frac{1}{0.30} »=3.3 \checkmark$ to give $v=0.95 \mathrm{c} \checkmark$		2
	C		$\gamma=1.25 \checkmark$ «length of train according Q » $=125 / 1.25 \checkmark$ "giving 100 m "		2
	d	i	 axes drawn with correct gradients of $\frac{5}{3}$ for $c t^{\prime}$ and 0.6 for $x^{\prime} \checkmark$	Award [1] for one gradient correct and another approximately correct.	1

$\mathbf{4}$	d	ii			

Option B — Engineering physics

Question			Answers	Notes	Total
5	a	i	$\frac{M}{3} v R \checkmark$		1
	a	ii	evidence of use of: $L=I \omega=\left(M R^{2}+\frac{M}{3} R^{2}\right) \omega \checkmark$		1
	a	iii	evidence of use of conservation of angular momentum, $\frac{M v R}{3}=\frac{4}{3} M R^{2} \omega \checkmark$ «rearranging to get $\omega=\frac{v}{4 R}$ "		1
	a	iv	initial $K E=\frac{M v^{2}}{6} \checkmark$ final $K E=\frac{M v^{2}}{24} \checkmark$ energy loss $=\frac{M v^{2}}{8} \checkmark$		3

Question			Answers	Notes	Total
5	b	i	$\begin{aligned} & \alpha «=\frac{3}{4} \frac{\Gamma}{M R^{2}} »=\frac{3}{4} \frac{0.01}{0.7 \times 0.5^{2}} \\ & \text { «to give } \alpha=0.04286 \text { rads }^{-2} » \end{aligned}$	Working OR answer to at least 3 SF must be shown	1
	b	ii	$\begin{aligned} & \theta=\frac{\omega_{i}^{2}}{2 \alpha} « \text { from } \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \theta » \checkmark \\ & \theta «=\frac{v^{2}}{32 R^{2} \alpha}=\frac{2.1^{2}}{32 \times 0.5^{2} \times 0.043} »=12.8 \text { OR } 12.9 \text { «rad» } \\ & \text { number of rotations «= } \frac{12.9}{2 \pi} »=2.0 \text { revolutions } \checkmark \end{aligned}$		3

Question			Answers	Notes	Total
6	a		«a process in which there is» no thermal energy transferred between the system and the surroundings \checkmark		1
	b		A to B AND C to D \checkmark		1
	c	i	$\begin{aligned} & T=\frac{P V}{n R} \checkmark \\ & T\left(=\frac{512 \times 10^{3} \times 1.20 \times 10^{-3}}{0.150 \times 8.31}\right) \approx 493 « \mathrm{~K} » \end{aligned}$	The first mark is for rearranging.	2
	c	ii	$\begin{aligned} & P_{B}=\frac{P_{\mathrm{a}} V_{A}}{V_{B}} \checkmark \\ & P_{B}=267 \mathrm{kPa} \checkmark \end{aligned}$	The first mark is for rearranging.	2
	d	i	«B to C adiabatic so» $P_{B} V_{B}^{\frac{5}{3}}=P_{C} V_{C}^{\frac{5}{3}}$ AND $P_{C} V_{C}=n R T_{C}$ «combining to get result» \checkmark	It is essential to see these 2 relations to award the mark.	1
	d	ii	$\begin{aligned} & T_{C}=\left(\frac{P_{B} V_{B}^{\frac{5}{3}}}{n R}\right) V_{C}^{\frac{-2}{3}} \checkmark \\ & T_{C}=«\left(\frac{267 \times 10^{3} \times\left(2.30 \times 10^{-3}\right)^{\frac{5}{3}}}{0.150 \times 8.31}\right)\left(2.90 \times 10^{-3}\right)^{\frac{-2}{3}} 》=422 « \mathrm{~K} » \checkmark \end{aligned}$		2
	e		the isothermal processes would have to be conducted very slowly / OWTTE \checkmark		1

Option C - Imaging

Question			Answers	Notes	Total
7	a	i	an image formed by extensions of rays, not rays themselves OR an image that cannot be projected on a screen \checkmark		1
	a	ii	$\begin{aligned} & \frac{1}{v}=\frac{1}{3.0}-\frac{1}{4.0} \checkmark \\ & « v=12 \mathrm{~cm} » \end{aligned}$		1
	a	iii	$\begin{aligned} & u=18-12=6.0 « \mathrm{~cm} » \\ & v=-24 \text { «cm» } \downarrow \\ & « \frac{1}{f}=\frac{1}{6.0}-\frac{1}{24} \Rightarrow>f=8.0 « \mathrm{~cm} » \end{aligned}$	Award [2 max] for answer of 4.8 cm . Minus sign required for MP2.	3
	a	iv	line parallel to principal axis from intermediate image meeting eyepiece lens at P line from arrow of final image to P intersecting principal axis at $F \checkmark$		2

Question		Answers	Notes	Total	
$\mathbf{7}$	b	i	object is far away so intermediate image forms at focal plane of objective \checkmark for final image at infinity object must also be at focal point of eyepiece \checkmark «hence 87.5 cm»	No mark for simple addition of focal lengths without explanation.	
	b	ii	angular magnification $=\frac{85.0}{2.50}=34 \checkmark$ angular diameter $34 \times 7.8 \times 10^{-3}=0.2652 \approx 0.27$ «rad» \checkmark		2
c	chromatic aberration is the dependence of refractive index on wavelength \checkmark but mirrors rely on reflection OR mirrors do not involve refraction \checkmark «so do not suffer chromatic aberration»	2			

Question			Answers	Notes	Total
8	a	i	Ionger distance without amplification signal cannot easily be interfered with \checkmark less noise \checkmark no cross talk \checkmark higher data transfer rate \checkmark		2 max
	a	ii	infrared radiation suffers lower attenuation \checkmark		1
	b		$\begin{aligned} & \text { loss }=10 \log \frac{2.4}{15} «=-7.959 \mathrm{~dB} » \\ & \text { length }=« \frac{7.959}{0.30}=» 26.53 \approx 27 \text { «km» } \end{aligned}$		2
	C		a thin core means that rays follow essentially the same path / OWTTE \checkmark and so waveguide (modal) dispersion is minimal / OWTTE \checkmark		2

Option D - Astrophysics

Question			Answers	Notes	Total
9	a	i	stars fusing hydrogen «into helium» \checkmark		1
	a	ii	$\begin{aligned} & M=M_{\odot}\left(4 \times 10^{5}\right)^{\frac{1}{3.5}}=39.86 M_{\odot} \checkmark \\ & « M \approx 40 M_{\odot}> \end{aligned}$	Accept reverse working.	1
	a	iii	$\begin{aligned} & 4 \times 10^{5}=13^{2} \times \frac{T^{4}}{6000^{4}} \downarrow \\ & T \approx 42000 « \mathrm{~K} » \checkmark \end{aligned}$	Accept use of substituted values into $L=\sigma 4 \pi R^{2} T^{4}$. Award [2] for a bald correct answer.	2
	a	iv	$\begin{aligned} & 4 \times 10^{-11}=4 \times 10^{5} \times \frac{1 \mathrm{AU}^{2}}{d^{2}} \\ & d=1 \times 10^{8} \text { «AU» } \end{aligned}$	Accept use of correct values into $b=\frac{L}{4 \pi d^{2}}$.	2
	b		the gravitation «pressure» is balanced by radiation «pressure» \checkmark that is created by the production of energy due to fusion in the core / OWTTE \checkmark	Award [1 max] if pressure and force is inappropriately mixed in the answer. Award [1 max] for unexplained "hydrostatic equilibrium is reached".	2

| Question | | Answers | Total | |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathbf{9}$ | \mathbf{c} | the Sun will evolve to become a red giant whereas Theta 1 Orionis will become a red super
 giant \checkmark
 the Sun will explode as a planetary nebula whereas Theta 1 Orionis will explode as a
 supernova \checkmark
 the Sun will end up as a white dwarf whereas Theta 1 Orionis as a neutron star/black hole \checkmark | | |

Question			Answers	Notes	Total
10	a		black body radiation / $3 \mathrm{~K} \checkmark$ highly isotropic / uniform throughout OR filling the universe \checkmark	Do not accept: CMB provides evidence for the Big Bang model.	2
	a	ii	$« \lambda=\frac{2.9 \times 10^{-3}}{2.8} » \approx 1.0<\mathrm{mm} » \checkmark$		1
	b		the universe is expanding and so the wavelength of the CMB in the past was much smaller \checkmark indicating a very high temperature at the beginning \checkmark		2
	c	i	$\begin{aligned} & « z=\frac{v}{c} \Rightarrow » v=0.16 \times 3 \times 10^{5} «=0.48 \times 10^{5} \mathrm{~km} \mathrm{~s}^{-1} » \checkmark \\ & « d=\frac{v}{H_{0}} \Rightarrow v=\frac{0.48 \times 10^{5}}{68}=706 » \approx 710 « \mathrm{Mpc} » \end{aligned}$	Award [1 max] for POT error.	2
	c	ii	$\begin{aligned} & z=\frac{R}{R_{0}}-1 \Rightarrow \frac{R}{R_{0}}=1.16 \checkmark \\ & \frac{R_{0}}{R}=0.86 \checkmark \end{aligned}$		2

